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Nuclear Criticality Safety Engineer Training
Module 4 1

Neutron Scattering

LESSON OBJECTIVE

To consider the mechanics of neutron scattering with nuclei and to understand neutron
moderation, including moderation through the resonance region.

NEUTRON SCATTERING

In previous modules, two types of neutron scattering were introduced: elastic, in which the
momentum and kinetic energy of the system are conserved; and inelastic, in which the momentum
is conserved but not the kinetic energy.

The conservation of energy and momentum equations in the laboratory coordinate system for a
neutron scattering from an initially stationary nucleus are:
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In these equations m is the neutron mass, M the target nucleus mass, vGi is the neutron velocity
before the collision, vGf is the neutron velocity after the collision, V& is the target nucleus velocity
after collision and Q is the net change in the kinetic energy of the system.  When generalized to
include reactions other than scattering, Q is called the disintegration energy or Q-value of the
reaction.  For inelastic scattering, the quantity Q is normally retained as energy of excitation of the
nucleus after the collision.

The second equation is a vector equation, which could be separated into equations in the x, y and
z directions.  However, for a single neutron scattering event, conservation of momentum
constrains the event to lie in a plane, reducing the momentum equations to a set of two.  The
three equations (one energy, two momentum) involve seven parameters: two masses, three speeds
and two scattering angles.
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Figure 1.  Diagram of Neutron Scattering Event

 Looking at the laboratory system in Figure 1 which defines the scattering angles, the two
momentum equations are:
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Normally the masses and the neutron incident speed are known and the three equations are
arranged to eliminate the speed and scattering angle of the recoil nucleus.  After some algebraic
manipulations, the energy of the scattered neutron, Ef, can be expressed in terms of the neutron
scattering angle, θ s, and the neutron initial energy, Ei.
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where µs = cos θs and θs is the neutron scattering angle in the laboratory coordinate system, and
A = M/m, the ratio of the scattering nucleus mass to the neutron mass.
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For elastic scattering, Q = 0, and this equation becomes
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With this equation the energy of the scattered neutron can be calculated in terms of the initial
neutron energy and the scattering angle in the laboratory coordinate system.

We have talked about the laboratory coordinate system but not about a center-of-mass, or center-
of-momentum, system.  Why might we care about a center-of mass system?  Physical
measurements are made in the laboratory system, reactors are built in the laboratory system and
we do criticality evaluations for systems in the laboratory coordinate system.  However, most
nuclear physics calculations are more easily done in the center-of-mass system and, for most cases
of interest, neutron scattering is isotropic in the center-of-mass system.  For low energies, less
than a few hundred keV, most of the elastic scattering cross sections are isotropic in the center-
of-mass system.  For hydrogen, neutron scattering is isotropic in the center-of-mass system to
energies well above 20 MeV.  For isotropic scattering the angular-dependent scattering cross
section in the center-of-mass system is
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where µ c is the cosine of the center-of-mass neutron scattering angle.  In this equation there is no
angular dependence.

The mathematics of the conversion from one system to the other is tedious.  The result will be
presented in order to learn something about hydrogen scattering. The relations between the
differential cross sections in the two coordinate systems are
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[NOTE: Don't get lost in the mathematics of the above equations.  The point in presenting them
is to show that there are two coordinate systems routinely used to describe neutron interactions
and that there are mathematical relations between the two systems.  The importance of these
relations is in the insight they can provide to the behavior of neutron interactions as described
below.]

As stated above, neutron scattering from hydrogen is isotropic in the center-of-mass system.  But
what does this say about neutron scattering from hydrogen in the laboratory coordinate system,
where measurements are made?  For hydrogen A = 1, Q = 0 and γ = 1 and Eqn (8) reduces to
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Inserting the expression for  σs(E,µ c) from Eqn (6) into Eqn (10) and solving for  σs(E,µ s), the
angular dependent scattering cross section for hydrogen in the laboratory system is
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Since negative scattering cross sections are not allowed, the hydrogen scattering cross section can
be described as:

Center-of-mass constant at σ s(E)/4 π

Laboratory      0 for -1 < µ s < 0( for π < θ s < 2π )

 for  0 < µ s < 1 ( for 0 < θ s < π )
σ

π
µs

s

E( )

4

Although neutron scattering on hydrogen is isotropic in the center-of-mass system, it is highly
anisotropic, i.e., it is all forward-scatter in the laboratory system.  The hydrogen laboratory
scattering cross section is shown in the following figure.  Hydrogen is a special, although a very
common, material in criticality evaluations.

For elastic scattering from heavier nuclei, , and as A becomes large, γ approachesγ = 1 2/ A
zero.  In that case , and the distinction between scattering in the twoσ µ σ µs s s cE E( , ) ( , )→
coordinate systems disappears; that is, isotropic scattering in the center-of-mass system is also
isotropic in the laboratory system.
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Neutron-Hydrogen Scattering
Laboratory Coordinates

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

Cosine of Scattering Angle

C
ro

ss
 S

ec
ti

o
n

Figure 2.  Neutron Scattering from Hydrogen in the Laboratory Coordinate System

Returning to the kinematics, we have relations between the scattering angles in the laboratory 
and center-of-mass systems and a relation between the scattered neutron energy and the scattering
angle in the laboratory system. With some manipulations the equations reduce to

(12)E E E
Q A

E A
Q

A
Af i i

i
c= + + − +

+
+

+
1
2

1
1
2

1 1
1

1
( ) ( )

( )
α α µ

where

.α ≡
−
+







A

A

1

1

2

For elastic scattering, Q = 0 and Equation 12 reduces to
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For the case µ c = 1 (forward scattering), E f = E i (i.e., there is no energy loss in a “grazing”
collision).  For backscatter, µ c = -1 and E f = αE i, which is the minimum energy a neutron can
have after an elastic scattering collision.

We have derived the maximum and minimum energy loss for a neutron after a scattering collision,
but what is the average energy loss?  The probability that a neutron with initial energy E i will have
a scattered energy in the energy interval dE f about E f is the ratio of the differential cross section
to the total cross section.
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The differential energy scattering cross section is related to the differential angular scattering
cross section by

(15)σ σ µ π µs i f f s i c cE E dE E d( ) ( , )→ = 2

In this equation the 2π comes from the azimuthal scattering dependence.  Since a single scattering
event is constrained to a plane there is no preferential scattering in the azimuthal direction.  The
differential dE f /dµ c can be calculated from
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For elastic scattering, which is isotropic in the center-of-mass system, the scattering probability
becomes
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The average energy loss is
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Some values for these scattering parameters for a few materials commonly encountered in
criticality situations are listed in the following table.  For scattering from hydrogen, on the
average, a neutron can lose half of its energy in a single scattering event; for scattering from
oxygen about 10% of the energy can be lost, with smaller fractions for scattering from the heavier
nuclides of uranium and plutonium.

A σ s α ∆Eavg /E i

H 1.0079 20.49 0.00 0.500

C 12.011 4.75 0.72 0.142

O 15.9994 3.76 0.78 0.111

Fe 55.847 11.35 0.93 0.035
235U 235.0439 14.3 0.98 0.008

239Pu 239.0522 7.6 0.98 0.008

Throughout this section we have mentioned elastic and inelastic scattering but have reduced each
case to elastic scattering only.  Inelastic scattering does not play a significant role in most nuclear
criticality considerations.  For high energy neutrons, those with energies above 1 MeV, inelastic
scattering can be a significant energy loss mechanism.  For example, for scattering of high energy
neutrons on uranium the energy loss could be near 10% for a single interaction rather than the
0.8% from elastic scattering.  Normally, however, the inelastic scattering cross sections are
smaller than the elastic and the presence of a little bit of moderator can dominate the energy loss
mechanism.

THERMAL NEUTRON SPECTRA

Neutrons are born in fission with energies in the MeV range and interact with nuclei, losing
energy with each scattering reaction until the neutron energy is comparable to the energy of
thermal motion of the scattering nuclei.  At this point the neutron can either gain or lose energy
and will be in "thermal equilibrium" with its surroundings.  In this case the neutron flux density
spectrum is Maxwellian; that is, the energy dependent flux density can be expressed by the
Maxwellian distribution
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where

E is the neutron energy,
n is the density of neutrons,
k is Boltzmann's constant,
m is the neutron mass, and
T is the temperature of the medium in degrees Kelvin.

The energy at which φ(E) is a maximum, the most probable energy, ET, is found by placing the
derivative of the distribution function equal to zero.  It is easily found that

ET = kT

and the speed, vT, of the neutrons having the most probable energy is found from

½ mvT
2 = kT

At room temperature (293.7 K), ET = 0.0253 eV = 1/40 eV and the neutron speed at this energy
vT = 2200 m/s.  This is the classic "thermal" neutron.  The average energy of the neutron in a

Maxwellian distribution is , about 0.038 eV.
3

2
kT

A neutron may be born in a fission event with energy about 2 MeV and end as a thermal neutron
with energy 1/40 eV.  During the thermalization process the neutron has passed through about 8
decades in energy and traversed the perilous path through nuclear resonances in the intermediate
energy range.  Figure 3 shows the calculated fission spectrum (see Module 1) and the thermal
neutron spectrum, each normalized separately.  In the intermediate region the spectrum would be
a horizontal straight line in a medium dominated by hydrogen scattering and with negligible
resonance absorption.

RESONANCE ABSORPTION AND SCATTERING

The wide variations in nuclear cross sections are caused by discrete energy levels in the nuclear
structure.  A few general statements about nuclear levels are evident from the cross sections. 
(See the cross section curves in NCSET Module 2.)

• Higher atomic number nuclides have more nuclear levels that lower atomic weight
nuclides.

• Higher atomic weight nuclides have their first resonance at lower energies than lower
atomic weight nuclides.

• The lower energy resonances are well separated, the higher energy resonances are
closer together and not well resolved.

• The lower energy resonances are larger than the higher energy resonances.
• Absorption resonances are symmetric; scattering resonances are not.
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Thermal and Fission Neutron Spectra
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Figure 3.  Comparison of Thermal and Fission Neutron Spectra

In this lesson a few equations are presented to illustrate some of these points.  For widely spaced
resonances, the energy dependence of the absorption cross section can be described by the Breit-
Wigner single level resonance formula.
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where

E0 is the energy of the resonance
Ec is the neutron energy in the center-of-mass system
Γ is the total absorption line width; i.e., the full width at half maximum (FWHM) of the

total absorption line width in energy units
Γγ is the radiative absorption line width
σ 0 is the value of the total cross section at the resonance energy, E0.

σ 0 is defined by

σ π λ0 0
24=

Γ
Γ

n g

where

g is the nuclear spin factor
λ0 is the reduced neutron wave length at E0, and
Γn is the neutron line width which is proportional to E1/2.

The shape of the resonance is symmetric about E0 because of y2 term.  The total cross section, σ 0

varies as 1/E 0.

A scattering resonance shape has three terms:

1) resonance scattering, the Breit-Wigner shape;
2) interference scattering between the incoming and outgoing neutron waves; and 
3) potential scattering, i.e., from a hard sphere with no nuclear structure.

These terms are combined in the following equation.
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where R is the nuclear radius (given approximately by 1.25 X 10 -13 A1/ 3 cm).  The significance of
this equation is that the interference term is proportional to y, which can be negative for neutron
energies lower than the resonance energy.  These are the dips in the cross sections evident for
many heavy nuclei.  These cross section dips can provide “windows” through which neutrons of
specific energies may stream.  (See the 238U curves in NCSET Module 2.)
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For the nuclear criticality specialist it is important to remember that there is an energy region in
which the neutron cross sections may vary widely over narrow energy ranges and that the neutron
slowing down through this energy range must be treated properly.  Fortunately, this has been
done in many of the codes used by the criticality specialist.  A few special cases are worthy of
mention.

• There are resonances in both the fission and capture cross sections which may not
coincide.  Thus the energy-dependent capture-to-fission ratio fluctuates in the
resonance region.

• 238U has a large absorption resonance at about 6.7 eV which can effect the number of
neutrons arriving at thermal energies in low-enriched uranium systems.  Lumps of
uranium and homogeneous mixtures have different reactivities.

• 239Pu and 240Pu have large overlapping resonances at about 66 eV which can interfere. 
Lumps of plutonium and homogeneous mixtures have different reactivities.

• Some lighter elements, such as iron and aluminum, may not have all of the resonances
properly treated which could lead to errors in unmoderated mixtures of these
materials.

SUMMARY

Neutrons lose energy by elastic scattering with nuclei.  The lighter the scattering material, the
more energy a neutron can lose in a single scattering event.  In general, scattering is isotropic in
the center-of-mass coordinate system and approaches isotropic in the laboratory system for most
nuclides.  The exception is scattering from hydrogen which is anisotropic in the laboratory system.

Neutrons are born in fission with energies in the MeV range and interact with nuclei, losing
energy with each scattering reaction until the neutron energy is comparable to the energy of
thermal motion of the scattering nuclei.  During the thermalization process the neutron has passed
through about eight decades in energy and through the resonance region in which cross sections
may vary widely in magnitude over narrow energy ranges.
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Neutron Energy vs Scattering Angle
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PROBLEM

1.  Compute and plot the energy of the scattered neutron as a function of the laboratory scattering
angle for a 2.0 MeV neutron elastically scattered from hydrogen, oxygen and 239Pu.

PROBLEM SOLUTION

1.  From Page 3, the energy of the scattered neutron is given by

[ ]E E
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i
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( )
µ µ µ=

+
− + +

1
12

2 2
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where µs = cos θs and θs is the neutron scattering angle in the laboratory coordinate system;
A = M/m, the ratio of the scattering nucleus mass to the electron mass.

Assume the following mass values: n 1.0087 H 1.0078
O 15.9994 239Pu 239.0522

The figure below shows the calculated results.  A tabulation of the values is on the following
page.
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Scattered Energy

Angle H O Pu-239

0 2.000 2.000 2.000

5 1.985 1.999 2.000

10 1.940 1.996 2.000

15 1.866 1.991 1.999

20 1.766 1.985 1.999

25 1.642 1.977 1.998

30 1.500 1.966 1.998

35 1.341 1.955 1.997

40 1.173 1.942 1.996

45 0.999 1.927 1.995

50 0.825 1.912 1.994

55 0.657 1.895 1.993

60 0.499 1.878 1.992

65 0.356 1.859 1.990

70 0.232 1.841 1.989

75 0.132 1.821 1.988

80 0.059 1.802 1.986

85 0.013 1.782 1.985

90 1.763 1.983

95 0.0 1.743 1.982

100 0.0 1.725 1.980

105 0.0 1.706 1.979

110 0.0 1.688 1.977

115 0.0 1.671 1.976

120 0.0 1.655 1.975

125 0.0 1.640 1.974

130 0.0 1.625 1.972

135 0.0 1.612 1.971

140 0.0 1.600 1.970

145 0.0 1.590 1.970

150 0.0 1.580 1.969

155 0.0 1.572 1.968

160 0.0 1.566 1.968

165 0.0 1.560 1.967

170 0.0 1.557 1.967

175 0.0 1.554 1.967

180 0.0 1.554 1.967


